Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(18): 9658-9671, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37615576

RESUMEN

Methylation of cytosines in the CG context (mCG) is the most abundant DNA modification in vertebrates that plays crucial roles in cellular differentiation and identity. After fertilization, DNA methylation patterns inherited from parental gametes are remodelled into a state compatible with embryogenesis. In mammals, this is achieved through the global erasure and re-establishment of DNA methylation patterns. However, in non-mammalian vertebrates like zebrafish, no global erasure has been observed. To investigate the evolutionary conservation and divergence of DNA methylation remodelling in teleosts, we generated base resolution DNA methylome datasets of developing medaka and medaka-zebrafish hybrid embryos. In contrast to previous reports, we show that medaka display comparable DNA methylome dynamics to zebrafish with high gametic mCG levels (sperm: ∼90%; egg: ∼75%), and adoption of a paternal-like methylome during early embryogenesis, with no signs of prior DNA methylation erasure. We also demonstrate that non-canonical DNA methylation (mCH) reprogramming at TGCT tandem repeats is a conserved feature of teleost embryogenesis. Lastly, we find remarkable evolutionary conservation of DNA methylation remodelling patterns in medaka-zebrafish hybrids, indicative of compatible DNA methylation maintenance machinery in far-related teleost species. Overall, these results suggest strong evolutionary conservation of DNA methylation remodelling pathways in teleosts, which is distinct from the global DNA methylome erasure and reestablishment observed in mammals.

2.
Nature ; 616(7957): 495-503, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046085

RESUMEN

Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.


Asunto(s)
Aletas de Animales , Evolución Biológica , Genoma , Genómica , Rajidae , Animales , Aletas de Animales/anatomía & histología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Rajidae/anatomía & histología , Rajidae/genética , Pez Cebra/genética , Genes Reporteros/genética
3.
Elife ; 102021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33983115

RESUMEN

We previously used a pulse-based in vitro assay to unveil targetable signalling pathways associated with innate cisplatin resistance in lung adenocarcinoma (Hastings et al., 2020). Here, we advanced this model system and identified a non-genetic mechanism of resistance that drives recovery and regrowth in a subset of cells. Using RNAseq and a suite of biosensors to track single-cell fates both in vitro and in vivo, we identified that early S phase cells have a greater ability to maintain proliferative capacity, which correlated with reduced DNA damage over multiple generations. In contrast, cells in G1, late S or those treated with PARP/RAD51 inhibitors, maintained higher levels of DNA damage and underwent prolonged S/G2 phase arrest and senescence. Combined with our previous work, these data indicate that there is a non-genetic mechanism of resistance in human lung adenocarcinoma that is dependent on the cell cycle stage at the time of cisplatin exposure.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Antineoplásicos/farmacología , Carboplatino/farmacología , Cisplatino/farmacología , Resistencia a Antineoplásicos , Neoplasias Pulmonares/patología , Adenocarcinoma del Pulmón/metabolismo , Animales , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Recombinasa Rad51 , Análisis de la Célula Individual , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Front Cell Dev Biol ; 9: 669439, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026760

RESUMEN

Unlike the hearts of mammals, the adult zebrafish heart regenerates after injury. Heart cryoinjury in zebrafish triggers the formation of a fibrotic scar that gradually degrades, leading to regeneration. Midkine-a (Mdka) is a multifunctional cytokine that is activated after cardiac injury. Here, we investigated the role of mdka in zebrafish heart regeneration. We show that mdka expression was induced at 1-day post-cryoinjury (dpci) throughout the epicardial layer, whereas by 7 dpci expression had become restricted to the epicardial cells covering the injured area. To study the role of mdka in heart regeneration, we generated mdka-knock out (KO) zebrafish strains. Analysis of injured hearts showed that loss of mdka decreased endothelial cell proliferation and resulted in an arrest in heart regeneration characterized by retention of a collagenous scar. Transcriptional analysis revealed increases in collagen transcription and intense TGFß signaling activity. These results reveal a critical role for mdka in fibrosis regulation during heart regeneration.

5.
Sci Rep ; 10(1): 12816, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32733088

RESUMEN

Caveolin-1 is the main structural protein of caveolae, small membrane invaginations involved in signal transduction and mechanoprotection. Here, we generated cav1-KO zebrafish lacking Cav1 and caveolae, and investigated the impact of this loss on adult heart function and response to cryoinjury. We found that cardiac function was impaired in adult cav1-KO fish, which showed a significantly decreased ejection fraction and heart rate. Using atomic force microscopy, we detected an increase in the stiffness of epicardial cells and cells of the cortical zone lacking Cav1/caveolae. This loss of cardiac elasticity might explain the decreased cardiac contraction and function. Surprisingly, cav1-KO mutants were able to regenerate their heart after a cryoinjury but showed a transient decrease in cardiomyocyte proliferation.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares/genética , Caveolas , Caveolina 1/genética , Caveolina 1/fisiología , Elasticidad , Eliminación de Gen , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Pez Cebra , Animales , Transducción de Señal/fisiología
6.
Elife ; 92020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32513387

RESUMEN

The identification of clinically viable strategies for overcoming resistance to platinum chemotherapy in lung adenocarcinoma has previously been hampered by inappropriately tailored in vitro assays of drug response. Therefore, using a pulse model that closely mimics the in vivo pharmacokinetics of platinum therapy, we profiled cisplatin-induced signalling, DNA-damage and apoptotic responses across a panel of human lung adenocarcinoma cell lines. By coupling this data to real-time, single-cell imaging of cell cycle and apoptosis we provide a fine-grained stratification of response, where a P70S6K-mediated signalling axis promotes resistance on a TP53 wildtype or null background, but not a mutant TP53 background. This finding highlights the value of in vitro models that match the physiological pharmacokinetics of drug exposure. Furthermore, it also demonstrates the importance of a mechanistic understanding of the interplay between somatic mutations and the signalling networks that govern drug response for the implementation of any consistently effective, patient-specific therapy.


Lung adenocarcinoma is the most common type of lung cancer, and it emerges because of a variety of harmful genetic changes, or mutations. Two lung cancer patients ­ or indeed, two different sets of cancerous cells within a patient ­ may therefore carry different damaging mutations. A group of drugs called platinum-based chemotherapies are currently the most effective way to treat lung adenocarcinoma. Yet, only 30% of patients actually respond to the therapy. Many studies conducted in laboratory settings have tried to understand why most cases are resistant to treatment, with limited success. Here, Hastings, Gonzalez-Rajal et al. propose that previous research has been inconclusive because studies done in the laboratory do not reflect how the treatment is actually administered. In patients, platinum-based drugs are cleared from the body within a few hours, but during experiments, the treatment is continually administered to cells growing in a dish. Hastings, Gonzalez-Rajal et al. therefore developed a laboratory method that mimics the way cells are exposed to platinum-based chemotherapy in the body. These experiments showed that the lung adenocarcinoma cells which resisted treatment also carried high levels of a protein known as P70S6K. Pairing platinum-based chemotherapy with a drug that blocks the activity of P70S6K killed these resistant cells. This combination also treated human lung adenocarcinoma tumours growing under the skin of mice. However, it was ineffective on cancerous cells that carry a mutation in a protein called p53, which is often defective in cancers. Overall, this work demonstrates the need to refine how drugs are tested in the laboratory to better reflect real-life conditions. It also underlines the importance of personalizing drug combinations to the genetic background of each tumour, a concept that will be vital to consider in future clinical trials.


Asunto(s)
Adenocarcinoma del Pulmón , Antineoplásicos/farmacología , Cisplatino/farmacología , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Transducción de Señal/efectos de los fármacos
7.
J Clin Invest ; 130(8): 4006-4018, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32568216

RESUMEN

Ligand-dependent activation of Hedgehog (Hh) signaling in cancer occurs without mutations in canonical pathway genes. Consequently, the genetic basis of Hh pathway activation in adult solid tumors, such as small-cell lung cancer (SCLC), is unknown. Here we show that combined inactivation of Trp53 and Rb1, a defining genetic feature of SCLC, leads to hypersensitivity to Hh ligand in vitro, and during neural tube development in vivo. This response is associated with the aberrant formation of primary cilia, an organelle essential for canonical Hh signaling through smoothened, a transmembrane protein targeted by small-molecule Hh inhibitors. We further show that loss of both Trp53 and Rb1 disables transcription of genes in the autophagic machinery necessary for the degradation of primary cilia. In turn, we also demonstrate a requirement for Kif3a, a gene essential for the formation of primary cilia, in a mouse model of SCLC induced by conditional deletion of both Trp53 and Rb1 in the adult airway. Our results provide a mechanistic framework for therapeutic targeting of ligand-dependent Hh signaling in human cancers with somatic mutations in both TP53 and RB1.


Asunto(s)
Autofagia , Proteínas Hedgehog/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Experimentales/metabolismo , Proteínas de Unión a Retinoblastoma/metabolismo , Transducción de Señal , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas Hedgehog/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Transgénicos , Mutación , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Proteínas de Unión a Retinoblastoma/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Proteína p53 Supresora de Tumor/genética
9.
Oncogene ; 38(10): 1661-1675, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30348992

RESUMEN

Our understanding of genomic heterogeneity in lung cancer is largely based on the analysis of early-stage surgical specimens. Here we used endoscopic sampling of paired primary and intrathoracic metastatic tumors from 11 lung cancer patients to map genomic heterogeneity inoperable lung cancer with deep whole-genome sequencing. Intra-patient heterogeneity in driver or targetable mutations was predominantly in the form of copy number gain. Private mutation signatures, including patterns consistent with defects in homologous recombination, were highly variable both within and between patients. Irrespective of histotype, we observed a smaller than expected number of private mutations, suggesting that ancestral clones accumulated large mutation burdens immediately prior to metastasis. Single-region whole-genome sequencing of from 20 patients showed that tumors in ever-smokers with the strongest tobacco signatures were associated with germline variants in genes implicated in the repair of cigarette-induced DNA damage. Our results suggest that lung cancer precursors in ever-smokers accumulate large numbers of mutations prior to the formation of frank malignancy followed by rapid metastatic spread. In advanced lung cancer, germline variants in DNA repair genes may interact with the airway environment to influence the pattern of founder mutations, whereas similar interactions with the tumor microenvironment may play a role in the acquisition of mutations following metastasis.


Asunto(s)
Heterogeneidad Genética , Neoplasias Pulmonares/genética , Neoplasias Torácicas/genética , Neoplasias Torácicas/secundario , Secuenciación Completa del Genoma/métodos , Adenocarcinoma del Pulmón/genética , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/clasificación , Carcinoma de Células Escamosas/genética , Variaciones en el Número de Copia de ADN , Femenino , Efecto Fundador , Interacción Gen-Ambiente , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Carcinoma Pulmonar de Células Pequeñas/genética , Microambiente Tumoral
10.
Sci Transl Med ; 10(451)2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30045976

RESUMEN

Resistance to platinum chemotherapy is a long-standing problem in the management of lung adenocarcinoma. Using a whole-genome synthetic lethal RNA interference screen, we identified activin signaling as a critical mediator of innate platinum resistance. The transforming growth factor-ß (TGFß) superfamily ligands activin A and growth differentiation factor 11 (GDF11) mediated resistance via their cognate receptors through TGFß-activated kinase 1 (TAK1), rather than through the SMAD family of transcription factors. Inhibition of activin receptor signaling or blockade of activin A and GDF11 by the endogenous protein follistatin overcame this resistance. Consistent with the role of activin signaling in acute renal injury, both therapeutic interventions attenuated acute cisplatin-induced nephrotoxicity, its major dose-limiting side effect. This cancer-specific enhancement of platinum-induced cell death has the potential to dramatically improve the safety and efficacy of chemotherapy in lung cancer patients.


Asunto(s)
Activinas/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Platino (Metal)/uso terapéutico , Células A549 , Animales , Carboplatino/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Folistatina/uso terapéutico , Humanos , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Oncogene ; 37(14): 1939-1948, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29367758

RESUMEN

Hypermethylated-in-Cancer 1 (Hic1) is a tumor suppressor gene frequently inactivated by epigenetic silencing and loss-of-heterozygosity in a broad range of cancers. Loss of HIC1, a sequence-specific zinc finger transcriptional repressor, results in deregulation of genes that promote a malignant phenotype in a lineage-specific manner. In particular, upregulation of the HIC1 target gene SIRT1, a histone deacetylase, can promote tumor growth by inactivating TP53. An alternate line of evidence suggests that HIC1 can promote the repair of DNA double strand breaks through an interaction with MTA1, a component of the nucleosome remodeling and deacetylase (NuRD) complex. Using a conditional knockout mouse model of tumor initiation, we now show that inactivation of Hic1 results in cell cycle arrest, premature senescence, chromosomal instability and spontaneous transformation in vitro. This phenocopies the effects of deleting Brca1, a component of the homologous recombination DNA repair pathway, in mouse embryonic fibroblasts. These effects did not appear to be mediated by deregulation of Hic1 target gene expression or loss of Tp53 function, and rather support a role for Hic1 in maintaining genome integrity during sustained replicative stress. Loss of Hic1 function also cooperated with activation of oncogenic KRas in the adult airway epithelium of mice, resulting in the formation of highly pleomorphic adenocarcinomas with a micropapillary phenotype in vivo. These results suggest that loss of Hic1 expression in the early stages of tumor formation may contribute to malignant transformation through the acquisition of chromosomal instability.


Asunto(s)
Inestabilidad Cromosómica/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Neoplasias/genética , Proteína p53 Supresora de Tumor/fisiología , Animales , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Células Cultivadas , Senescencia Celular/genética , Embrión de Mamíferos , Femenino , Genes Supresores de Tumor/fisiología , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/patología
12.
Dev Cell ; 43(6): 659-672.e5, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29257949

RESUMEN

The attenuation of ancestral pro-regenerative pathways may explain why humans do not efficiently regenerate damaged organs. Vertebrate lineages that exhibit robust regeneration, including the teleost zebrafish, provide insights into the maintenance of adult regenerative capacity. Using established models of spinal cord, heart, and retina regeneration, we discovered that zebrafish Treg-like (zTreg) cells rapidly homed to damaged organs. Conditional ablation of zTreg cells blocked organ regeneration by impairing precursor cell proliferation. In addition to modulating inflammation, infiltrating zTreg cells stimulated regeneration through interleukin-10-independent secretion of organ-specific regenerative factors (Ntf3: spinal cord; Nrg1: heart; Igf1: retina). Recombinant regeneration factors rescued the regeneration defects associated with zTreg cell depletion, whereas Foxp3a-deficient zTreg cells infiltrated damaged organs but failed to express regenerative factors. Our data delineate organ-specific roles for Treg cells in maintaining pro-regenerative capacity that could potentially be harnessed for diverse regenerative therapies.


Asunto(s)
Regeneración/fisiología , Linfocitos T Reguladores/fisiología , Pez Cebra/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Factores de Transcripción Forkhead/fisiología , Corazón/fisiología , Modelos Animales , Regeneración Nerviosa/fisiología , Organogénesis/inmunología , Organogénesis/fisiología , Retina/fisiología , Médula Espinal/fisiología , Proteínas de Pez Cebra/fisiología
13.
Development ; 144(8): 1425-1440, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28242613

RESUMEN

The zebrafish heart regenerates after ventricular damage through a process involving inflammation, fibrotic tissue deposition/removal and myocardial regeneration. Using 3D whole-mount imaging, we reveal a highly dynamic endocardium during cardiac regeneration, including changes in cell morphology, behaviour and gene expression. These events lay the foundation for an initial expansion of the endocardium that matures to form a coherent endocardial structure within the injury site. We studied two important endocardial molecules, Serpine1 and Notch, which are implicated in different aspects of endocardial regeneration. Notch signalling regulates developmental gene expression and features of endocardial maturation. Also, Notch manipulation interferes with attenuation of the inflammatory response and cardiomyocyte proliferation and dedifferentiation. serpine1 is strongly expressed very early in the wound endocardium, with decreasing expression at later time points. serpine1 expression persists in Notch-abrogated hearts, via what appears to be a conserved mechanism. Functional inhibition studies show that Serpine1 controls endocardial maturation and proliferation and cardiomyocyte proliferation. Thus, we describe a highly dynamic endocardium in the regenerating zebrafish heart, with two key endocardial players, Serpine1 and Notch signalling, regulating crucial regenerative processes.


Asunto(s)
Endocardio/metabolismo , Proteínas de Homeodominio/metabolismo , Inflamación/patología , Proteínas del Tejido Nervioso/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Receptor Notch1/metabolismo , Regeneración , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Endocardio/patología , Células Endoteliales/metabolismo , Congelación , Inflamación/metabolismo , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Sus scrofa , Regulación hacia Arriba , Cicatrización de Heridas
14.
Development ; 140(7): 1402-11, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23344707

RESUMEN

Zebrafish have the capacity to regenerate several organs, including the heart and fins. Fin regeneration is epimorphic, involving the formation at the amputation plane of a mass of undifferentiated, proliferating mesenchymal progenitor-like cells, called blastema. This tissue provides all the cell types that form the fin, so that after damage or amputation the fin pattern and structure are fully restored. How blastema cells remain in this progenitor-like state is poorly understood. Here, we show that the Notch pathway plays an essential role during fin regeneration. Notch signalling is activated during blastema formation and remains active throughout the regeneration process. Chemical inhibition or morpholino-mediated knockdown of Notch signalling impairs fin regeneration via decreased proliferation accompanied by reduced expression of Notch target genes in the blastema. Conversely, overexpression of a constitutively active form of the Notch1 receptor (N1ICD) in the regenerating fin leads to increased proliferation and to the expansion of the blastema cell markers msxe and msxb, as well as increased expression of the proliferation regulator aldh1a2. This blastema expansion prevents regenerative fin outgrowth, as indicated by the reduction in differentiating osteoblasts and the inhibition of bone regeneration. We conclude that Notch signalling maintains blastema cells in a plastic, undifferentiated and proliferative state, an essential requirement for fin regeneration.


Asunto(s)
Aletas de Animales/fisiología , Diferenciación Celular/genética , Proliferación Celular , Receptores Notch/fisiología , Regeneración/genética , Pez Cebra , Células Madre Adultas/metabolismo , Células Madre Adultas/fisiología , Factores de Edad , Aletas de Animales/embriología , Aletas de Animales/metabolismo , Animales , Animales Modificados Genéticamente , Regulación hacia Abajo/genética , Embrión no Mamífero , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Receptores Notch/genética , Receptores Notch/metabolismo , Regeneración/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología
15.
Nat Med ; 19(2): 193-201, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23314057

RESUMEN

Left ventricular noncompaction (LVNC) causes prominent ventricular trabeculations and reduces cardiac systolic function. The clinical presentation of LVNC ranges from asymptomatic to heart failure. We show that germline mutations in human MIB1 (mindbomb homolog 1), which encodes an E3 ubiquitin ligase that promotes endocytosis of the NOTCH ligands DELTA and JAGGED, cause LVNC in autosomal-dominant pedigrees, with affected individuals showing reduced NOTCH1 activity and reduced expression of target genes. Functional studies in cells and zebrafish embryos and in silico modeling indicate that MIB1 functions as a dimer, which is disrupted by the human mutations. Targeted inactivation of Mib1 in mouse myocardium causes LVNC, a phenotype mimicked by inactivation of myocardial Jagged1 or endocardial Notch1. Myocardial Mib1 mutants show reduced ventricular Notch1 activity, expansion of compact myocardium to proliferative, immature trabeculae and abnormal expression of cardiac development and disease genes. These results implicate NOTCH signaling in LVNC and indicate that MIB1 mutations arrest chamber myocardium development, preventing trabecular maturation and compaction.


Asunto(s)
Cardiomiopatías/etiología , Ventrículos Cardíacos , Mutación , Receptores Notch/fisiología , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Animales , Cardiomiopatías/genética , Femenino , Células HEK293 , Corazón/embriología , Ventrículos Cardíacos/embriología , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Multimerización de Proteína , Ubiquitina-Proteína Ligasas/fisiología , Pez Cebra
16.
Cardiovasc Res ; 93(2): 232-41, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22068159

RESUMEN

AIMS: The epidermal growth factor-like protein Delta-like 1 (DLK1) regulates multiple differentiation processes. It resembles NOTCH ligands structurally and is considered a non-canonical ligand. Given the crucial role of the NOTCH pathway in angiogenesis, we hypothesized that DLK1 could regulate angiogenesis by interfering with NOTCH. We therefore investigated the expression and function of DLK1 in the vascular endothelium and its role in the regulation of angiogenesis. METHODS AND RESULTS: We report DLK1 expression in the endothelium of different species, including human, cow, pig, and mouse. Angiogenesis was studied by using in vitro and in vivo models of angiotube formation in endothelial cells, retinal phenotypes in Dlk1-null mice, and vessel development in zebrafish. DLK1 overexpression strongly inhibited angiotube formation, whereas lung endothelial cells from Dlk1-null mice were highly angiogenic. In vivo studies demonstrated DLK1-mediated inhibition of neovessel formation and revealed an altered pattern of angiogenesis in the retinas of Dlk1-null mice. The expression of human DLK1 in zebrafish embryos severely altered the formation of intersegmental vessels, while knockdown of the orthologous gene was associated with ectopic and increased tumour-induced angiogenesis. NOTCH-dependent signalling as determined by gene expression reporters was inhibited by the presence of DLK1 in vascular endothelial cells. In contrast, Dlk1-null mice showed increased levels of NOTCH downstream targets, such as Snail and Slug. CONCLUSION: Our results unveil a novel inhibitory role for DLK1 in the regulation of angiogenesis, mediated by antagonism of the NOTCH pathway, and establish the basis for investigating its action in pathological settings.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Neovascularización Fisiológica , Animales , Proteínas de Unión al Calcio , Bovinos , Células Cultivadas , Células Endoteliales/metabolismo , Ratones , Neovascularización Patológica/etiología , Receptores Notch/antagonistas & inhibidores , Neovascularización Retiniana/etiología , Transducción de Señal , Cicatrización de Heridas , Pez Cebra
17.
Dev Dyn ; 236(9): 2594-614, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17685488

RESUMEN

Signaling through Notch receptors, which regulate cell fate decisions and embryonic patterning, requires ligand-induced receptor cleavage to generate the signaling active Notch intracellular domain (NICD). Here, we show an analysis at specific developmental stages of the distribution of active mouse Notch1. We use an antibody that recognizes N1ICD, and a highly sensitive staining technique. The earliest N1ICD expression was observed in the mesoderm and developing heart, where we detected expression in nascent endocardium, presumptive cardiac valves, and ventricular and atrial endocardium. During segmentation, N1ICD was restricted to the presomitic mesoderm. N1ICD expression was also evident in arterial endothelium, and in kidney and endodermal derivatives such as pancreas and thymus. Ectodermal N1ICD expression was found in central nervous system and sensory placodes. We found that Notch1 transcription and activity was severely reduced in zebrafish and mouse Notch pathway mutants, suggesting that vertebrate Notch1 expression is regulated by a positive feedback loop.


Asunto(s)
Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Receptor Notch1/genética , Receptor Notch1/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Animales , Sistema Cardiovascular/embriología , Linaje de la Célula , Sistema Nervioso Central/embriología , Hematopoyesis , Ratones , Páncreas/embriología , Receptores Notch/metabolismo , Timo/embriología , Distribución Tisular , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...